Determination of gas-diffusion and interface-mass-transfer coefficients in fracture-heavy oil saturated porous matrix system

نویسندگان

  • E. Zamanian
  • M. Hemmati
  • M. S. Beiranvand
چکیده

For the modeling and simulation of oil recovery from naturally fractured reservoirs during the gas injection process, an accurate value of the molecular diffusion coefficient (MDC) of gases from a gas filled fracture into the oil matrix is essential. During the injection of miscible fluids with oil, transport of the injectant and oil are controlled by fracture and matrix properties. Diffusion is a significant-oil recovery mechanism between matrix and fracture. However, experimentally determined data concerning to gas transfer between fracture-matrix systems by diffusion mechanism are relatively rare. In this study the pressure-decay method is applied to obtain effective molecular diffusion coefficient of CO2 and CH4 in heavy oil saturated porous matrix media at different conditions of temperatures. Gas-diffusion and interface-mass-transfer coefficients are determined by applying a transient-state equilibrium diffusion model. The effect of porous media presence on these coefficients has also been investigated. It is expected that the experimental results will be useful in deriving the matrix-fracture transfer function by diffusion, which is required for simulation of recovery in naturally fractured reservoirs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Liquid Bridge in Gas/Oil Gravity Drainage in Fractured Reservoirs

Gravity drainage is the main mechanism which controls the oil recovery from fractured reservoirs in both gas-cap drive and gas injection processes. The liquid bridge formed between two adjacent matrix blocks is responsible for capillary continuity phenomenon. The accurate determination of gas-liquid interface profile of liquid bridge is crucial to predict fracture capillary pressure precisely. ...

متن کامل

Measurement of Mass Transfer Coefficients of Natural Gas Mixture during Gas Hydrate Formation

In this study, mass transfer coefficients (MTC’s) of natural gas components during hydrate formation are reported. This work is based on the assumption that the transport of gas molecules from gas phase to aqueous phase is dominant among other resistances. Several experiments were conducted on a mixture of natural gas at different pressures and temperatures and the consumed gas was monitored an...

متن کامل

Turbulent Events and Gas-Side Mass Transfer Coefficients in a Wavy Air-Water Stratified Flow

Turbulence structure on the gas side of a wavy stratified flow was experimentally investigated in a near horizontal 18.7 cm (H) 10 cm (W) 5.5m (L) rectangular duct.By applying the Variable Interval Time Averaging (VITA) technique to the hot wire anemometer measurements frequency of occurrence of turbulent events were detected near the air-water interface. Experimental results showed that fr...

متن کامل

Study on Mass Transfer Enhancement in a Gas-Liquid System Using Nanomaterials

The main objective of this paper is to examine the effect of nanomaterials on mass transfer coefficient in bubble type absorption of carbon dioxide by experiment. The absorption process is carried out in a bubble column and in room temperature. Mass transfer coefficient, saturated concentration of CO2, and gas holdup are determined in this system. The kinds of nanomaterials, the concentrations ...

متن کامل

Foam Application in Fractured Carbonate Reservoirs: A Simulation Study

Fractured carbonate reservoirs account for 25% of world’s total oil resources and for 90% of Iranian oil reserves. Since calcite and dolomite minerals are oil wet, gas oil gravity drainage (GOGD) is known as the most influencing production mechanism. The most important issue within gas injection into fractured media is the channeling problem which makes the efficiency of gas injection process e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013